You are viewing the site in preview mode

Skip to main content

Table 2 Models used and their performances

From: A scoping review of machine learning models to predict risk of falls in elders, without using sensor data

Authors (year)

Model

Accuracy

AUC

Sample size

Validation

A. Kabeshova (2015) [21]

NEAT

88%

0.7

3289

Holdout

T. Deschamps (2016) [26]

Decision tree

82%

N/A

426

Holdout

A. Kabeshova (2016) [20]

ANFIS

87%

0.7

3525

Cross-validation

M. L. Homer (2017) [24]

Lasso logistic regression

N/A

0.71

120,881

Holdout

J. Razmara (2018) [19]

ANN (psychological and public factors)

91%

N/A

200

Holdout

B. W. Patterson (2019) [29]

Random forest

N/A

0.78

9687

Holdout

J. A. Womack (2020) [22]

Logistic regression

N/A

0.76

275,940

Holdout

M. Suzuki (2020) [28]

CNN “triple factor” (mini-mental state + normalized knee extension strength + FIM locomotion)

65%

N/A

42

Cross-validation

H. Nakatani (2020) [23]

MCMC

N/A

0.83

743

Holdout

K. Makino (2021) [27]

Decision tree

65%

0.7

2520

Cross-validation

C. H. Liu (2021) [25]

Bagging + SVM

71%

0.72

108,940

Cross-validation

W. M. Chu (2022) [31]

Random forest

73%

0.69

1101

Cross-validation

Y. Suzuki (2022) [32]

Logistic regression

77%

0.75

226

Cross-validation

R. Thapa (2022) [30]

eXtreme Gradient Boosting

N/A

0.85

2785

Holdout

K. N. K. Fong (2023) [33]

Decision tree

77%

N/A

1151

Cross-validation

J. H. Choi (2023) [35]

XGBoost

N/A

0.85

1090

Cross-validation

V. Sharma (2023) [36]

CatBoost

N/A

0.7

224,445

Holdout

O. A. Donoghue (2023) [34]

Conditional inference forest

67%

0.69

4706

Cross-validation

E. Soylemez (2024) [37]

Support vector machine (SVM) and Naïve Bayes

100%

1

120

Holdout