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Abstract

Background: How to select variables and identify functional forms for continuous variables is a key concern when
creating a multivariable model. Ad hoc ‘traditional’ approaches to variable selection have been in use for at least 50
years. Similarly, methods for determining functional forms for continuous variables were first suggested many years
ago. More recently, many alternative approaches to address these two challenges have been proposed, but
knowledge of their properties and meaningful comparisons between them are scarce. To define a state of the art
and to provide evidence-supported guidance to researchers who have only a basic level of statistical knowledge,
many outstanding issues in multivariable modelling remain. Our main aims are to identify and illustrate such gaps
in the literature and present them at a moderate technical level to the wide community of practitioners, researchers
and students of statistics.

Methods: We briefly discuss general issues in building descriptive regression models, strategies for variable selection,
different ways of choosing functional forms for continuous variables and methods for combining the selection of
variables and functions. We discuss two examples, taken from the medical literature, to illustrate problems in the
practice of modelling.

Results: Our overview revealed that there is not yet enough evidence on which to base recommendations for the
selection of variables and functional forms in multivariable analysis. Such evidence may come from comparisons
between alternative methods. In particular, we highlight seven important topics that require further investigation and
make suggestions for the direction of further research.

Conclusions: Selection of variables and of functional forms are important topics in multivariable analysis. To define a
state of the art and to provide evidence-supported guidance to researchers who have only a basic level of statistical
knowledge, further comparative research is required.
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Introduction
Progress in the theory of mathematical statistics and ex-
pansion of computational resources and technology have
led to rapid developments in statistical methodology,
resulting in many more complex and flexible statistical
modelling techniques. Unfortunately, many of these
methodological developments are ignored in the analysis
of medical data. Consequently, design and analysis of
observational studies often exhibit serious weaknesses.
To help bridge the gap between recent methodological
developments and applications, the STRengthening Ana-
lytical Thinking for Observational Studies (STRATOS)
initiative was launched in 2013 [98]. Currently, the ini-
tiative has nine topic groups working on various statis-
tical issues in planning and analysis of observational
studies. Here we concentrate on issues relevant to topic
group 2 (TG2) ‘selection of variables and functional
forms in multivariable analysis’, which focuses on identi-
fying influential variables and gaining insight into their
individual and joint relationships with the outcome.
By definition, work in TG2 is primarily concerned with

statistical model building. In this respect, it should be
noted that STRATOS also has related topic groups
working on prediction (TG6) and modelling issues in
causal inference (TG7). In a thought-provoking paper,
Breiman [16] differentiated between a data modelling
culture and an algorithmic modelling culture. In several
comments to this paper [26, 35], differences between
possible ways of statistical modelling were discussed.
TG2 concentrates mainly on the data modelling culture.
As the conflation and confusion between topics and ap-
proaches in modelling are common, we will clarify our
background and aim by referring to the paper ‘To Ex-
plain or to Predict’ by Shmueli [106]. The latter author
explains differences in three conceptual modelling
approaches: descriptive, predictive and explanatory mod-
elling. Descriptive modelling is the most commonly used
approach, and it mainly builds on the data modelling
culture. It does not directly aim at obtaining optimal
predictive performance, but at capturing the data struc-
ture parsimoniously. Nevertheless, a suitable descriptive
model is often also an acceptable predictive model. In
some fields, the term explanatory modelling is used
exclusively for testing causal theory. As this paper con-
centrates on issues in descriptive modelling, aspects of
causal modelling will be ignored as causal inferences
cannot be drawn from models formulated using a de-
scriptive approach. See Dorie et al. [31] and several com-
ments to this paper for a discussion of the large number
of issues in causal inference.
The intended use of a model is a key consideration when

choosing a suitable analysis strategy. For a descriptive model,
interpretability, transportability and general usability are im-
portant criteria. By contrast, if descriptiveness plays no role,
models for prediction may be optimised for predictive accur-
acy and can then be more complex (more variables included,
more complex functions allowed). With very complex and
interrelated associations of covariates with the outcome and
enough data to unravel such associations, algorithmic model-
ling approaches may become valuable modelling tools. No
matter if descriptiveness is important or not, biasses are in-
troduced by deriving the ‘final’ model data-dependently.
However, the relevance of critical issues (such as biasses,
large variances, number of variables included and model
complexity) must be weighed against advantages with respect
to the intended purpose of modelling.
To obtain good descriptive models, the (interrelated)

challenges of selection of variables for inclusion and
choice of the functional forms for continuous variables
must be tackled [50, 96], and this constitutes the main
aim of TG2. In general, the analyst is expected to con-
duct the analysis according to state of the art (SOTA)
methodology, which is defined in Wikipedia [124] as
‘State of the art refers to the highest level of general de-
velopment, as of a device, technique, or scientific field
achieved at a particular time’. SOTA also plays a key role
in applications for funding of a research project, where a
brief section summarising SOTA is often requested.
However, do we have enough evidence to define SOTA
methodology for the selection of variables and functional
forms for continuous variables?
About three decades ago, Picard and Cook [85] stated

‘Exact distributional results [on maximum likelihood esti-
mates and test statistics] are virtually impossible to obtain
[because of data-dependent model building], even for the
simplest of common subset selection algorithms’. Al-
though there is substantial progress, current developments
and empirical comparisons are inadequate to identify ad-
vantages and disadvantages of the many variable selection
techniques and to provide evidence-supported arguments
regarding SOTA strategies for variable selection.
For more than 50 years, suitable algorithms have been

available for various stepwise variable selection tech-
niques [37]. Triggered by the intention to derive suitable
‘omics’ predictors (often called ‘gene signatures’) in
high-dimensional data with many more explanatory vari-
ables than observations, various techniques for selecting
variables have been proposed during the last two de-
cades, adding to the long list of ‘traditional’ approaches.
Consequently, analysts may have access to many toolkits,
but it is not straightforward which variable selection ap-
proach they should use and under what circumstances.
Will the results be (seriously) influenced by the variable
selection method chosen?
Similar arguments apply to the methodology for deter-

mining the functional form for continuous variables
such as age, blood pressure, values of laboratory tests,
exposure intensity or dose of a substance which often
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play an important predictive or explanatory role. Assuming
linear effects of such variables on the outcome is often the
default choice and rarely questioned, but the reason for this
is often ignorance and not the result of carefully considering
the most plausible functional form. Hence, the variable selec-
tion problem needs to be combined with the selection of
suitable functional form(s) for continuous variables, i.e. the
dose-response function, substantially increasing the complex-
ity of the modelling issues. For function selection, at least
four general approaches, with several variations, are used in
recent studies: assuming a priori a linear relationship, cat-
egorisation, fractional polynomials and different spline-based
methods. Yet, while all rely on important explicit or implicit
assumptions and have some limitations, there is little guid-
ance to choose between these approaches. Reasons for
selecting one or the other are rarely explained. Several
methods have been published, but the number of studies
comparing alternative strategies is limited. Consequently,
there are strong barriers concerning knowledge transfer [86].
With a focus on applications in observational studies

of human health, we provide a brief overview of existing
methods for variable selection, identify some issues with
each of the four approaches to represent the functional
form for continuous variables and discuss topics requir-
ing further research. This is an important step on the
long way to provide evidence-supported arguments re-
garding SOTA methodology for building multivariable
models with continuous variables. Experienced statisticians
belonging to the STRATOS ‘level 2’ category (Table 1 in
[98]) are the intended audience for this paper.
In the ‘General issues in building descriptive regres-

sion models’ section, we discuss general issues in build-
ing descriptive regression models. In the ‘Variable
selection strategies’ section, we briefly summarise the
most popular methods of variable selection. Approaches
to handle continuous variables are outlined in the ‘Con-
tinuous variables—to categorise or to model?’ section,
and the combination of methods for variable and func-
tional form selection is discussed in the ‘Combining vari-
able and function selection’ section. In the ‘Examples
illustrating the problems’ section, we provide two exam-
ples of potentially suboptimal approaches to illustrate
weaknesses in analyses related to TG2 issues. In the ‘To-
wards state of the art—research required!’ section, we
identify some unsolved methodological issues that re-
quire further research towards establishing SOTA meth-
odology, before giving concluding remarks in the
‘Discussion’ section.

General issues in building descriptive regression
models
In most observational studies, a mix of continuous and
categorical variables are collected. Many of these vari-
ables are correlated, implying that the results of selection
and/or modelling of a given variable may depend, some-
times critically, on whether and how some of the other
variables are represented in the multivariable model.
The current paper focuses on popular multivariable re-
gression models, such as a normal-errors regression
model for continuous outcomes, a logistic regression
model for binary outcomes or the Cox proportional haz-
ards model for censored survival data. Arguably, these
are the main types of regression models used in health
sciences applications. In health research, depending on
the context, the terms risk factor, prognostic factor, pre-
dictor, exposure, covariate or confounder are often used
for variables. Here we will use them interchangeably.
It is generally acknowledged that subject-matter know-

ledge should guide multivariable model-building. A study
should be carefully planned, guided by the research ques-
tions and consideration of the methods envisaged for ana-
lysing the data. In randomised trials, a detailed analysis
plan is written before the final data are collected and the
analysis starts. However, the situation is more complex
with observational studies [96]. For example, when con-
sidering the association between a continuous exposure
and the probability of developing a disease, subject-matter
knowledge does not always give clear advice for the set of
potential confounders that the model should be adjusted
for nor in particular for the functional forms of their asso-
ciation with the outcome [10]. Since subject-matter know-
ledge is often limited or at best fragile, data-dependent
model building is necessary [49]. Pre-specifying all aspects
of a model is almost invariably unrealistic in observational
studies. The gain of preventing bias by avoiding data-
dependent model building is offset by the high cost of ig-
noring models which may fit the data much better than
the pre-specified one. Also, what if assumptions under-
lying the pre-specified model are violated?
A key issue of variable selection is which of the candi-

date variables to include in the ‘final’ model. Some re-
searchers argue that variables with ‘strong’ effects will be
included by any sensible variable selection strategy and
that it is less important to include a larger number of vari-
ables with no or a ‘small’ effect [99]. The potential cost of
obtaining information on all selected variables also im-
pinges on the general usability of a model. If the originally
selected model indicates that a variable whose values are
difficult to obtain has only a small effect on the outcome,
such a model will be infrequently used in practice.
Breiman [14] states ‘When a regression problem con-

tains many predictor variables, it is rarely wise to try to
fit the data by means of a least squares regression on all
of the predictor variables. Usually, a regression equation
based on a few variables will be more accurate and cer-
tainly simpler.’
Variable selection methods aim to eliminate all un-

influential variables, at least at a defined evidential level



Sauerbrei et al. Diagnostic and Prognostic Research             (2020) 4:3 Page 4 of 18
(e.g. a nominal significance level). Data-dependent model
building certainly introduces several types of bias and
problems [49, 56, 108], including replication stability, se-
lection bias, omitted variable bias, underestimation of
variance and overestimation of the predictive ability of a
model. These are critically important for weak risk fac-
tors, but ‘weak’ must be judged in the context of the
sample size. The possible magnitude of these biasses
must be weighed against the advantages of better inter-
pretability of smaller models.
Another crucial issue for model building is the

functional form with which variables should enter the
variable selection procedure. In practice, continuous
variables are often categorised before being subjected
to variable selection, although major weaknesses of
categorising continuous variables have been well-
known for decades [3, 94]. Aside from categorisation
[105], assuming linearity is the norm. Flexible model-
ling techniques based on various types of smoothers,
including fractional polynomials [93, 96] and several
types of splines [30, 38, 128], are available but are
still underused. Although selection of variables and
functional forms for continuous variables both apply
to many analyses, suitable methods that address both
issues are not often utilised.
Of course, many more analysis issues arise, such as the

investigation of potential interactions between two or
more predictors or interactions between a predictor and
follow-up time in a survival analysis (time-dependent ef-
fects). We do not consider them in what follows. Finally,
we stress that many decisions are required before model
building can start. For a discussion of several issues, we
refer to Chatfield [22], to the paper of Mallows [72] on
the ‘zeroth’ problem and to the first paper by the STRA
TOS topic group TG3 (Initial data analysis), which dis-
cusses a conceptual framework to handle the large num-
ber of issues [63].

Variable selection strategies
Virtually any statistical software package contains proce-
dures for variable selection. This made their use very
popular, particularly with end-users without a formal
background in statistics. However, this wide availability
has been a breeding ground for common misapprehen-
sions of the role and necessity for variable selection [56].
In six subsections, we will briefly discuss key issues of
traditional variable selection strategies, ‘change in esti-
mate’ procedures, and modern variable selection strategies
based on penalisation, boosting and resampling. Shrinkage
methods were proposed to correct for selection bias, a key
issue caused by data-dependent modelling. This section
ends with a short summary of post-selection inference.
Two examples illustrating problems will be discussed in
the ‘Examples illustrating the problems’ section.
Traditional variable selection strategies
Traditional variable selection methods involve auto-
mated iterative stepwise model building procedures that
rely on testing the statistical significance of the regres-
sion coefficients for all variables considered at a given
step. One popular approach starts from a null model
containing no variables and adds one variable at a time,
corresponding to the most significant (lowest p value) of
their contributions to improving model fit (forward se-
lection (FS)). Alternatively, a ‘full model’ including all
potential explanatory variables is estimated first and then
the least significant variables are eliminated one-by-one
(backward elimination (BE)). The ‘stepwise’ approach
implemented in some software packages combines for-
ward selection with additional backward steps. The sig-
nificance level used as the stopping threshold is the
tuning parameter that determines the size of the final
model [96]. The smaller the level, the fewer variables will
be selected.
Biostatisticians widely agree that among the selection

procedures just described, backward elimination, with or
without additional forward steps, is the preferable
method as it already starts with a plausible model [73].
The backward elimination algorithm sets some regres-
sion coefficients exactly to zero contrary to the actual
(unpenalised) maximum likelihood estimates of the re-
gression coefficients (which are usually never exactly
zero). This means that one intentionally moves away
from the maximum likelihood solution by inducing bias.
Particularly for weak predictors, this bias may decrease
the variance because of an implicit shrinkage towards
zero. However, if a weak predictor is ‘selected’ by the al-
gorithm, its corresponding regression coefficient may be
seriously biassed away from zero [25, 79, 97]. The in-
creased bias usually also increases the mean squared
error (MSE) of the predicted value of the outcome, and
the random element contributed by an uncertain selec-
tion decision further contributes to MSE inflation. In a
recent review, Heinze et al. [56] proposed some
resampling-based measures to estimate the bias condi-
tional on selection and the inflation in (root) MSE
caused by the selection. Although intuitively appealing,
their proposals are still to be validated in simulation
studies.
Backward elimination and other stepwise selection

methods are shortcuts to the computationally more ex-
pensive best subset selection, where all possible models
are estimated and their fit is compared using some infor-
mation criterion. Different information criteria have been
proposed, among which Akaike’s information criterion
(AIC) is in principle preferable for predictive models and
Schwartz’s Bayesian information criterion (BIC) for de-
scriptive models [19]. The purpose of AIC is to approxi-
mate the predictive performance, quantified by the model
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deviance, which would be expected in validation in an in-
dependent sample drawn from the same population. By
contrast, BIC aims at selecting the true predictor variables
[87]. However, BIC cannot reach this goal unless the
model space searched includes the ‘true data generating
model’ and the data set is large enough for such an ap-
proximation to work. For comparison of two hierarchic-
ally nested models differing in only one model term with
one degree of freedom (df), AIC and BIC can be directly
translated into significance tests of that model term. For
AIC, the corresponding threshold p value is 0.157. For
BIC, the threshold depends on the sample size; the penalty
parameter is log(n) [111]. For example, sample sizes of
100 or 400 correspond to significance levels of 0.032 or
0.014. Thus, while AIC will include more and more (weak)
predictors with increasing sample size, selection by BIC
will become more and more strict. Originally, these cri-
teria were developed to compare a small number of pre-
specified models, not to screen a large model space. How-
ever, nowadays, they are used more generally as a prag-
matic approach to model selection.
Best subset selection may not pose a big computa-

tional challenge in the era of parallel computing, but
even so, it may not be preferable to backward elimin-
ation. The increased flexibility may engender a higher
probability of selecting ‘spurious’ predictors, i.e., to in-
crease selection uncertainty. Furthermore, if variable se-
lection is to be combined with selection of the
functional forms of continuous variables (see the ‘Com-
bining variable and function selection’ section), a best
subset selection procedure would increase the number
of candidate models substantially. To the best of our
knowledge, it has never been suggested.
‘Univariate selection’, i.e. selection of variables based on

significance in univariable regression models, is still popu-
lar, notably in high-dimensional studies in the fields of
bioinformatics and (epi-)genetics [44, 125]. For example,
the FDA-recommended CKD273 signature for diagno-
sis of early kidney disease is based on univariate
protein filtering followed by a machine learning algo-
rithm applied to the filtered features [27, 46, 83].
Among non-statisticians, many (seem to) believe that
univariate significance is a prerequisite for including a
variable in a multivariable model [55]. In contrast, it
is generally accepted among statisticians that the dif-
ference between unadjusted and adjusted effects of a
variable can go in either direction; therefore, that uni-
variable selection may be misleading [109].

Procedures based on ‘change-in-estimate’
Selection procedures based on the change-in-estimate are
particularly popular in epidemiology, especially for the
situation where the effect of an exposure of main interest
should be adjusted for confounders [48, 66, 71]. The
change-in-estimate criterion evaluates if elimination of a
potential confounder from the model would lead to a rele-
vant change in the regression coefficients of the exposure
variable of interest. ‘Relevance’ is often defined as more
than, e.g. a 10% change in the regression coefficient of the
exposure of interest [66]. Hosmer, Lemeshow and col-
leagues incorporated the change-in-estimate criterion into
significance-based selection procedures, yielding their
‘purposeful selection’ [20, 61, 62]. This was later revisited
by Dunkler et al. [33], who proposed modifying the
change-in-estimate. In their ‘augmented backward elimin-
ation’ procedure, non-significant variables are not omitted
from a model if a standardised change in estimate follow-
ing their elimination exceeds a certain pre-specified
threshold. They argue that their algorithm will generate
final models that are close to the starting model and will
only eliminate really unnecessary variables. Therefore, the
resulting bias is likely to be smaller than that induced by
the conventional backward elimination procedure.

Modern variable selection strategies
Penalised likelihood
Ridge regression, proposed by Hoerl and Kennard [58],
introduced a penalty term into the log-likelihood which
is proportional to the sum of squared regression coeffi-
cients (L2-norm, L2 penalisation). While this approach
provided shrinkage and solved issues of near-collinearity
and overfit, it did not yet address variable selection. Two
approaches to combining variable selection with shrink-
age were proposed in the mid-1990s. The non-negative
garrotte starts with ordinary least squares estimates from
the full model and estimates parameterwise shrinkage
factors under a specified constraint [15]. For coefficients
with a stronger effect, the shrinkage factor will be close
to 1. For variables that are weakly associated with the re-
sponse, the least-squares estimate is likely to be small
and consequently, the shrinkage factor will tend towards
zero, corresponding to variable elimination. As an esti-
mate from the full model is needed, the approach cannot
be used for the analysis of high-dimensional data. We
consider this as one of the main reasons that the ap-
proach did not become more popular.
Shortly after the non-negative garrotte, Tibshirani

[112] proposed the popular Lasso method, which con-
sists of penalising the log-likelihood of a model with a
multiple of the sum of absolute regression coefficients
(L1 penalisation). Consequently, some of the regression
coefficients become exactly zero, and hence the method
provides a variable selection. The strength of the penalty,
i.e. the multiplier of the penalty term, often symbolised
by λ, determines the size of the resulting model. Usually,
λ is estimated from the data. It can be determined in
various ways, cross-validation being the most common.
A practical problem with the Lasso penalty is that the
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regression coefficients of different variables should all
have the same scaling. This is usually achieved by work-
ing with standardised covariates, i.e. by first dividing
each covariate by its empirical standard deviation. How-
ever, different choices for standardisation may lead to
different results. Therefore, one should bear in mind
that the Lasso, unlike the traditional significance-based
selection procedures, is not invariant to transformations
of the covariates. Nowadays, the Lasso is widely access-
ible because of many implementations in R (the glmnet
package being the most popular [43] and in other soft-
ware packages.
The Lasso tends to screen variables rather than to se-

lect them, meaning that it often includes variables with
very weak effects. Furthermore, in the presence of collin-
ear or grouped variables, the Lasso fails to select all vari-
ables in the group. For high-dimensional data where ‘p >
n’, the Lasso can only select up to n variables. To ad-
dress these issues, modifications have been suggested in-
cluding the Elastic Net [129] and the Adaptive Lasso
[130]. The Elastic Net combines L1 (equivalent to the
Lasso) and L2 (Ridge) penalisation, removing the limita-
tion on the number of selected variables but also en-
couraging grouped selection. An advantage of the Elastic
Net is that it includes L1 and L2 penalisation as special
cases. The Adaptive Lasso penalises the log-likelihood
with λ times a weighted sum of absolute regression coef-
ficients, where the weights are determined in a pre-
estimation step, usually as the reciprocal absolute regres-
sion coefficients from a maximum likelihood or ridge re-
gression fit. The rationale for this is to down-weight
penalties of strong predictors and to up-weight weak
predictors in the penalty term. Usually, it results in
models with fewer variables and stronger effects.
Another popular modification with the same goal is

Smoothly Clipped Absolute Deviation (SCAD) [39], where
coefficients larger in an absolute sense are penalised less
than smaller ones. Further generalisations of the Lasso are
listed in Tibshirani [113] and Hastie et al. [54].

Boosting
Component-wise boosting is a forward stagewise regres-
sion procedure applicable to generalised linear models,
Cox models, quantile regression and many other types of
statistical regression models [11, 18, 115]. The method is
rooted in the field of machine learning, where it was first
used for tree-based binary classification (AdaBoost algo-
rithm) [40]. Based on work by Friedman et al. [42], who
discovered the connection between boosting and logistic
regression, many types of boosting algorithms have been
proposed. Today, two popular approaches are gradient
boosting [18, 41] and likelihood-based boosting [115],
which coincide in the case of Gaussian regression but
differ in their applicability and assumptions otherwise (see
[76] for a comparison). Regardless of their conceptual dif-
ferences, both approaches make use of the same basic idea
for variable selection: starting with an empty model, only
one regression coefficient is updated in each step of the
boosting algorithm (‘component-wise’ updates). In con-
trast to traditional forward selection, updates are done by
adding only small fractions (e.g. one tenth or one hun-
dredth) of the estimated regression coefficients to the esti-
mates obtained in previous steps (‘stagewise’ procedure).
Variable selection (i.e. selection of the regression coeffi-
cient to update) is done by evaluating in each step all uni-
variable regression models conditional on the estimates of
the previous steps (used as offsets) and to select the vari-
able corresponding to the best-fitting univariable model.
Stopping the boosting algorithm before convergence
(‘early stopping’) results in variable selection and shrink-
age, like the Lasso. In fact, boosting and the LASSO are
equivalent in specific settings and can even be shown to
be modifications of the same underlying algorithm (least
angle regression (LARS)) [36], which explains their similar
performance in many applications. The number of boost-
ing steps is the main tuning parameter of the procedure,
often optimised by cross-validation. Boosting algorithms
are particularly useful in high-dimensional settings but
can also be applied in the low-dimensional case.

Resampling-based variable selection procedures
Since the mid-eighties of the last century, resampling
procedures (usually the nonparametric bootstrap) have
been proposed to assess model (in-)stability. The boot-
strap inclusion frequencies (BIF) from a large number of
resampling replications is used as a criterion for model
selection [2, 23, 45]. These approaches are based on the
idea that variables with a ‘stronger effect’ are selected
with a high probability in each replication, whereas the
selection of others may be a matter of chance. A BIF
threshold needs to be chosen and only variables with lar-
ger BIFs are included in the model.
However, this simple ‘summary’ of the selected models

from resampling replications may result in selecting a
‘bad’ model if the inclusion of two (or more) variables
depends on each other. One important reason is the cor-
relation structure of the candidate variables, which may
strongly influence BIFs of some variables. It may happen
that one of two variables is included in each of the repli-
cations, but the individual BIFs are not much higher
than 50%. Thus, based on its BIF, neither variable may
be judged important. To cope with such situations,
Sauerbrei and Schumacher [103] suggested considering
dependencies among inclusion fractions. They defined
two bootstrap variable selection procedures, one aiming
for a simpler model including strong factors only,
whereas the other including also weaker factors. The
BIFs and their dependencies are used as criteria to select
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a final model. Recently, a large simulation study showed
promising results [28], but more practical experience is
needed. However, the issue of dependencies among vari-
able inclusions seems to be widely ignored and further
issues need more consideration (such as the central role
of the originally used variable selection procedure and
the effect of influential points).
In the last decade, resampling-based variable selection

procedures have become more popular. Meinshausen and
Bühlmann [78] introduced stability selection, which com-
bines subsampling (bootstrap without replacement) with
(high-dimensional) selection algorithms. The method is
very general and is widely applicable. The authors state
that stability selection provides finite sample control for
some error rates of false discoveries. Recently, the specific
type of resampling procedure has become a topic of re-
search. Some argue that subsampling may be preferable to
the nonparametric bootstrap for investigations in the con-
text of model building [29, 64, 92]. However, issues like
the most suitable sampling rate (0.632 seems to be the
most common) need further investigation.

Bias and the role of shrinkage methods
The regularised procedures described in the ‘Procedures
based on ‘change-in-estimate" section are so-called shrink-
age methods, as they introduce some bias towards zero
into the regression coefficients to try to reduce the predic-
tion error. Shrinkage methods can also be applied in com-
bination with traditional variable selection methods,
where the use of shrinkage factors has been proposed to
improve the accuracy of predictions. In the latter context,
shrinkage factors may be estimated using resampling and
are then multiplied by the regression coefficients to obtain
shrunken coefficients. Either a common global shrinkage
factor [118] or parameter-specific shrinkage factors [97]
can be used for this purpose. van Houwelingen and Sauer-
brei [117] revisited these approaches in the context of linear
regression models and found that backward elimination in
combination with parameter-specific shrinkage factors
yields models that are similarly or even more accurate than
those from the modern approaches. These shrinkage
methods may also act as a tool to (partly) remove the over-
estimation bias induced by variable selection methods (dis-
cussed in the ‘Traditional variable selection strategies’
section), even though their construction is not motivated
by the goal of bias correction. A systematic investigation of
this ‘side effect’ is still lacking. Moreover, the proposed esti-
mation method by leave-one-out cross-validation could be
questioned; as in other contexts, other resampling proce-
dures have been preferred [107].

Post-selection inference
Since the main aim of descriptive models is the inter-
pretation of the estimated regression coefficients, point
estimates should be accompanied by confidence intervals
and sometimes also by p values. For traditional selection
procedures, virtually any statistical software reports con-
fidence intervals and p values of the final model, derived
under the assumption that the model was given a priori.
This ignores uncertainty in model predictions, estimates
of effects and variance caused by model selection. Brei-
man [14] called this a ‘quiet scandal’. Meanwhile, under-
estimation of the uncertainty has been confirmed in
numerous simulation studies for different types of
models. Various approaches for coping with model un-
certainty have been proposed, starting with Chatfield
[21] and Draper [32]. Recently, Heinze et al. [56] pro-
posed for different settings: (1) Use the full model for in-
ference about regression coefficients, where the full
model is the model including all variables considered for
adjustment, and so each regression coefficient is ad-
justed for all others. (2) If a small number of pre-
specified competing models is evaluated, use model-
averaging as proposed by Burnham and Anderson [19].
(3) If the full model is implausible and no evidence for a
small set of candidate variables is available, assess the
variability of the regression coefficients around the full
model estimates using the bootstrap, where in each
bootstrap replication, the selection procedure is re-
peated. When comparing this variability with the stand-
ard error in the full model, one often sees variance
inflation, even for strong predictors, and variance reduc-
tion only for highly non-influential variables [56].
Although statistical inference after data-driven model

selection has been deemed impossible [67], recent years
have seen a couple of advances in that direction [110].
There are now even some R packages available with
which confidence intervals for regression parameters se-
lected with the Lasso can be estimated [114]. However,
given that these procedures were developed only re-
cently, evidence of their performance in practice is still
limited.
Parameterwise or joint shrinkage factors [34, 97] have

been proposed in an attempt to reduce overestimation
bias due to selection of variables and functional forms. It
is still unclear how a correction for the variance, e.g. by
using a sandwich variance estimator that is robust to
model misspecification [122, 123], may help in achieving
approximately valid confidence intervals.

Continuous variables—to categorise or to model?
The effects of continuous predictors are typically modelled
by either categorising them (which raises issues such as
the number of categories, cutpoint values, implausibility
of the resulting step-function relationships, local biasses,
power loss or invalidity of inference due to data-
dependent cutpoints) [47] or assuming linear relationships
with the outcome, possibly after a simple transformation
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(e.g. logarithmic or quadratic). Often, however, the rea-
sons for choosing such conventional representations of
continuous variables are not discussed and the validity of
the underlying assumptions is not assessed [98]. Com-
monly used methods are summarised by Becher [8].
To address limitations caused by categorisation or a

questionable assumption of linearity, statisticians have
developed flexible modelling techniques based on vari-
ous types of smoothers, including fractional polynomials
[93, 96] and several types of splines. The latter include
restricted regression splines [30, 50], penalised regres-
sion splines [127] and smoothing splines. For multivari-
able analysis, these smoothers have been incorporated in
generalised additive models [52]. Depending on personal
preferences of the analyst, usually, one approach for the
main analysis is chosen, sometimes complemented by al-
ternative approaches as sensitivity analyses. Some prop-
erties of the approaches, which may lead to different
results, are given below.

Categorisation
Categorisation allows researchers to avoid strong assump-
tions about the functional relationship between the con-
tinuous variable and the outcome of interest. Some
analysts incorrectly consider categorisation to be ‘model-
free’. It was often the method of choice in the past when
analysis was based on contingency tables. The approach
has the advantage that it leads to results that seem to be
easier to interpret and is therefore often favoured by non-
statisticians. The functional form for the effect of a covari-
ate is often unknown, and an analysis using a categorised
variable is simpler than working with continuous variables
directly. In general, reporting is easier, and categorisation
allows graphical presentation, e.g. Kaplan-Meier curves
can be produced in survival analysis. However, it has some
serious drawbacks.
Categorisation raises several issues such as the number

of cutpoints, where to place them and how to code the
resulting variable for the analysis. Obviously, the use of
two groups makes it impossible to detect a non-linear re-
lationship. It is well-known that the results of analyses can
vary if different cutpoints are used for splitting. Usually,
dummy variables are defined and different codings are
possible. Alternatively, a coding scheme with a suitable
choice of scores implying a metric (e.g. {1, 2, 3}, {1, 2, 4} or
scores representing the median of each category), together
with a test for linear trend, is possible. For variables with a
spike at zero (see the ‘FP procedure to handle variables
with a ‘spike at zero" section), a natural baseline category
is the unexposed group.
Many objections to categorisation have been raised

during the last three decades. It is often stressed that
categorisation should not be used to derive the final
model [80, 57, 3, 94, 119, 121]. The full information
contained in the data is not used, and the resulting risk
function is a step function. From a biological perspec-
tive, a step function may be unrealistic, since individuals
close to but on opposite sides of a cutpoint are charac-
terised as having very different risks or prognostic
scores. If the (unknown) underlying relationship with
the outcome is expected to be smooth but not necessar-
ily linear, interpretation of step functions is implausible.
Furthermore, categorisation discards information, the
greatest loss occurring when a variable is dichotomised.
However, when interest centres on accurate prediction
at small or large values of a variable, van Houwelingen
[116] produced arguments favouring grouping.
Some analysts appear to believe that the severe infor-

mation loss incurred by categorisation may be compen-
sated by finding the ‘optimal’ cutpoint that defines two
groups. Every possible cutpoint on x is considered and
the value of x which minimises the p value is chosen.
The cutpoint selected is to some extent due to chance
and is not reproducible. Altman et al. [3] called this pro-
cedure the ‘minimum p value’ approach and stressed
that the estimated effect describing the difference be-
tween two groups is strongly overestimated and that if
uncorrected, multiple testing increases the type I error
to around 40% instead of a nominal 5%.
Other methods of determining a cutpoint are to use

recognised values (e.g. > 25 kg/m2 to define ‘overweight’
based on body mass index), to use ‘round numbers’ such
as multiples of five or ten, to use the upper limit of a ref-
erence interval in healthy individuals or to apply cut-
points used in previous studies. These methods still
incur information loss, but at least not an inflated type I
error probability. In the absence of predefined cutpoints,
epidemiological researchers often use three to five cat-
egories based on quantiles of the empirical distribution,
while in clinical studies, the most common choice is
dichotomisation, often at the sample median. However,
different cutpoints are used in different studies, so the
results can neither be easily compared nor summarised.
For example, nineteen cutpoints were identified when
the prognostic value of S-phase fraction in breast cancer
patients was assessed [3]. Several of them resulted from
an ‘optimal’ cutpoint analysis.
Categorising a continuous variable into three or more

groups reduces the loss of information. Several methods
of coding can be used for the categorised variable. Care
is needed to choose the coding in a suitable way, specif-
ically if variable selection is used in combination with
dummy variables (4, see the ‘Modern variable selection
strategies’ section). Despite the well-known problems
caused by categorisation, it is still the preferred approach
in practice. Descriptive analysis of continuous covari-
ables is often done with frequency tables for which some
form of grouping is needed. In a recent review of cohort
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studies in physical activity, the primary exposure was
categorised in 21/30 (70%) of studies. In 51 dietary in-
take studies, all variables were categorised in 27 (53%)
and at least one variable in 50 (98%) [105].
To summarise, categorisation of a continuous or semi-

continuous variable may be useful for descriptive presen-
tation of data, for initial analysis and for checking model
assumptions. Furthermore, categorisation can help to
simplify final models, e.g. for presentation, and it is often
required in clinical decision-making. However, it is un-
necessary and often harmful when used to build the final
statistical model. Several modelling approaches have
been proposed and should become the standard to as-
sess the functional influence of a continuous variable,
avoiding the need to categorise.

Modelling nonlinear effects of continuous variables
In the following, we will briefly describe and discuss the
fractional polynomial and spline-based approaches. For
more details, we refer to the web supplement and the lit-
erature referenced in the following paragraphs.

Fractional polynomials
The class of fractional polynomial (FP) functions is an
extension of power transformations of a covariate. For
most applications FP1 (β1x

p1) and FP2 (β1x
p1 + β2x

p2)
functions are sufficient. For the exponents p1 and p2, a
set S = {− 2, − 1, − 0.5, 0, 0.5, 1, 2, 3} with 0 = log x has
been proposed. For p1 = p2 = p (‘repeated powers’), an
FP2 function is defined as β1x

p + β2x
p log x. This defines

8 FP1 and 36 FP2 models. The class of FP functions ap-
pears small, but it includes very different types of shapes
[93]. General FPm functions are well-defined and
straightforward but are rarely used in medical applica-
tions. The main aim of FP modelling is the derivation of
a suitable function which fits the data well, while being
simple, interpretable and generally usable. Therefore, a
linear function is the default and a more complex non-
linear function is only chosen if strongly supported (ac-
cording to a chosen significance level) by the data. The
functional relationship is selected by a function selection
procedure (FSP) with up to three steps (if FP2 is the
most complex function considered) [96]. The test at step
1 is of overall association of the variable with the out-
come. The test at step 2 examines the evidence for non-
linearity. The test at step 3 chooses between a simpler
FP1 or a more complex FP2 nonlinear model (for details
see the web supplement).
In the ‘General issues in building descriptive regres-

sion models’ section, we emphasised the need for a
model building procedure related to the main aim of the
analysis. For FPs, this can be done by pre-specifying the
most complex FP functions allowed (often FP2, some-
times FP1, occasionally FPm with m > 2) and by
choosing nominal significance levels, which are the key
tuning parameters for determining the function’s com-
plexity according to the aim of the study.
It is well-known that data-dependent model building

results in biassed estimates and incorrect p values. How-
ever, the FSP uses the principle of a closed test proced-
ure which ensures that the overall type 1 error is close
to the nominal significance level [74]. For some simula-
tion results on type 1 error and power, see Royston and
Sauerbrei [96], section 4.10.5.

Splines
Another common method of modelling nonlinear effects
of continuous variables is spline regression. Generally, a
spline function is defined by a set of piecewise polyno-
mial functions of a continuous variable that are joined
smoothly at a set of knots spread across the support of
the variable [128]. In contrast to fractional polynomials,
the piecewise polynomial functions defining a spline all
have the same degree. For example, cubic splines are
constructed from a set of piecewise polynomials each of
degree 3. Another conceptual difference between splines
and fractional polynomials is the range over which the
components of the two methods are defined. Whereas
splines are constructed from ‘local’ piecewise functions
(each defined between two consecutive knots), the power
functions involved in the construction of a fractional
polynomial are each defined over the whole range of the
continuous variable.
Generalised additive models (GAMs) [52, 128] extend

generalised linear models by the inclusion of smooth
nonlinear effects of continuous variables. Each nonlinear
effect is represented by a spline function (although other
smoothers are in principle possible). Estimation of the
spline functions is usually carried out by writing splines
as a linear combination of spline basis functions and by
estimating the weights in this combination via (possibly
penalised) maximum likelihood optimisation. Generally,
GAMs support a huge number of modelling alternatives
and model fitting techniques. This is because splines
come in many shapes and forms differing, e.g. in the de-
gree of the polynomial pieces and/or the number and
positions of the knots. Furthermore, it is common to im-
pose restrictions on the spline functions, for example
linearity restrictions at the boundaries of the variables’
supports (used, e.g. in natural splines [53]), complexity
restrictions imposed by lower-order approximations (e.g.
in thin-plate regression splines [126]), smoothness re-
strictions imposed by ‘wiggliness’ penalties (used, e.g. in
smoothing splines and in P-splines, which penalise the
second- or higher-order differences of the basis function
coefficients [38]) or imposing monotonicity [89]. If pen-
alties are used in GAMs, each spline function is usually
associated with a separate hyperparameter determining
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the weight of the respective penalty in penalised max-
imum likelihood estimation. In addition, the definition
of the basis functions is not unique, and there exist vari-
ous possibilities on how to define them, each with differ-
ent numerical properties. For details, see the web
supplement. Note that splines can also be used in boost-
ing algorithms, see, e.g. Schmid and Hothorn [104]. Ob-
viously, all the aforementioned modelling options affect
the shapes of the spline functions, and hence also the ef-
fects and the interpretation of the respective variables in
a GAM. Perperoglou et al. [84] provide an overview of
the most widely used spline-based techniques and their
implementation in R.
In an investigation of the effect of alcohol intake as a

risk factor for primary oral cancer, Rosenberg et al. [91]
discussed several issues of spline modelling when deter-
mining the functional form of a continuous variable in
practice. Abrahamowicz et al. [1] illustrated the practical
advantages of spline modelling, implemented with the
smoothing splines within GAMs, to detect and account
for nonlinear associations in the context of cardiovascular
epidemiology. They demonstrated how the flexibility of
the splines may enhance the robustness of the estimates.

FP procedure to handle variables with a ‘spike at zero’
In epidemiology and in clinical research, variables often
have unusual distributions. Commonly in epidemio-
logical studies, a proportion of individuals have zero ex-
posure to the risk factor of interest, whereas for the
remainder, the distribution of the risk factor is continu-
ous. We call this a ‘spike at zero’ or a ‘semi-continuous
variable’. Examples are smoking, duration of breastfeed-
ing or alcohol consumption. In the first example, a part
of the individuals are non-smokers with dose zero and
for smokers, the dose variable, e.g. average number of
cigarettes per day, is continuous. Furthermore, the empir-
ical distribution of laboratory values and other measure-
ments may have a semi-continuous distribution because
the lower detection limit of the measurement is assigned a
value of zero. Such a variable cannot directly be analysed
with FPs (see the ‘Fractional polynomials’ section) since
some of the transformations needed are only defined for
positive values. An ad hoc but arguably unsatisfactory
method is to add a small constant to each observation.
Spike at zero variables can be analysed by categorisa-

tion, using the zero category as baseline. The method
has the same disadvantages as mentioned in the ‘Cat-
egorisation’ section. A better approach is described [8, 9]
and illustrated [70], using an extended version of frac-
tional polynomials. Briefly, a binary indicator variable Z
(exposed/non-exposed) is generated, and the modelling
involves both Z and the spike at zero variable X, where
the transformations are applied to the positive part of X
only. A similar approach was proposed earlier in the
context of parametric modelling of the association be-
tween smoking intensity and lung cancer. Leffondre
et al. [68] demonstrated that it allows researchers to sep-
arate (i) the ‘qualitative’ difference between ever-
smokers relative to non-smokers, from (ii) the ‘quantita-
tive’ dose-response association estimated using data on
smokers only.
Four closely related procedures have been proposed

for model building with two (which can be extended to
more) spike-at-zero variables [65]. Although it is rele-
vant to the analysis of many studies, practical experience
is limited.

Combining variable and function selection
Variable selection in the presence of non-linear relation-
ships of covariates with the outcome is an even more
complicated exercise. In fact, decisions regarding the in-
clusion/exclusion of specific variables and modelling of
the functional forms of both these variables and poten-
tial confounders may depend on each other in a complex
way. Firstly, the ‘importance’ and/or statistical signifi-
cance of a continuous variable may depend strongly on
how its relationship with the outcome is modelled. For
example, whereas there was no evidence for an associ-
ation of body mass index (BMI) with the logit of the
probability of coronary heart death (CHD) assuming a
linear effect, a GAM-based multivariable model with the
same adjustment covariates revealed a non-monotone J-
shaped association. CHD mortality increased for both
very lean and obese subjects [1].

The multivariable fractional polynomial approach
The multivariable fractional polynomial (MFP) approach
is a pragmatic procedure to create a multivariable model
with the parallel aims of selecting important variables
and determining a suitable functional form for continuous
predictors [96, 101]. To select a model, significance levels
chosen for the two components (backward elimination
(BE) and FP functions) are the key settings for determin-
ing model complexity. If more or fewer variables are in-
cluded, simple linear or more complex non-linear
functions are selected. If an extremely low significance
level (e.g. 0.00001) is used to select FP functions, usually
only linear functions are selected and MFP in effect be-
comes just BE. Choosing 0.999 as a significance level in
the BE component ensures that a specific variable is guar-
anteed to enter the model. Although relatively simple and
easily understood by researchers familiar with the basics
of regression models, the selected models often extract
most of the important information from the data. Based
on experience in practice but without providing empirical
evidence, Sauerbrei et al. [102] give several recommenda-
tions for MFP modelling under some assumptions, e.g. the
sample size is not too small and there is no interaction
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between covariates. Models derived are relatively easy to
interpret and to report, a pre-requisite for transportability
and general use in practice. Easy to use software in Stata,
SAS and R is available [100]. Several extensions of MFP
have been proposed. Only programs in Stata are available
for these extensions. For more details, see http://mfp.imbi.
uni-freiburg.de/.
Because of data-dependent selection of variables and

their functional forms, overestimation bias is likely to
arise. As with the arguments in the context of variable
selection (see the ‘Resampling-based variable selection
procedures’ section), bias may be reduced by estimating
and applying parameter-specific shrinkage factors (see
the ‘Resampling-based variable selection procedures’ sec-
tion). In the context of MFP, an extension to this meth-
odology was proposed by [34]. They suggested providing
‘joint’ shrinkage factors for semantically related regres-
sion coefficients, e.g. the components of a second-order
FP. Systematic investigations of their proposal in the
context of combined variable and functional form selec-
tion have not been reported.

Spline regression
‘Traditional’ selection techniques used in generalised
linear models (GLMs) are also available for GAMs.
Many R packages such as mgcv and gamlss imple-
ment approaches to forward or backwards stepwise
regression based either on p values of the smooth
terms or on AIC/BIC-type criteria. These approaches
are intuitive and easy to use (and hence popular) but
have the same weaknesses as GLMs. Additionally,
since smoothness parameters are not fixed but esti-
mated, p values associated with the smooth terms are
approximate and may be biassed.
Alternatively, given a specific model structure, model

selection might be performed using prediction error cri-
teria or likelihood-based methods such as generalised
cross-validation, unbiassed risk estimator (UBRE) or
REML with maximum likelihood for smoothness selec-
tion. Such methods, however, are unlikely to be success-
ful and have known drawbacks [128].
More recent approaches consider penalisation of

smooth terms to perform variable selection. A penalty
term on a regression spline penalises the range space of
the spline, controlling how wiggly the function is. For
example, increasing the weight of a second-order deriva-
tive penalty to infinity will effectively force the term to
linearity. On the other hand, it will not remove the term
from the model, as the null space of the spline remains
unpenalised. Marra and Wood [75] therefore suggested
null space penalisation by adding an extra penalty for
each smooth term to the log-likelihood. If all smoothing
parameters for the term tend to infinity, then it is pena-
lised to zero and is effectively dropped from the model.
There also exists a special type of shrinkage smoothers,
based on cubic regression splines and thin plate regression
spline smoothers in which a modification of the smooth-
ing penalty would allow strong enough penalisations to
shrink all coefficients of the smooth term to zero [128].
Clearly, such penalisation methods are not easily imple-
mented but rely on the availability of a software package
(such as mgcv) to provide the appropriate fitting routines
as well as methods for optimisation of the smoothing pa-
rameters. Clearly, since penalisation techniques are rela-
tively new, further research is needed to compare their
performance with that of stepwise procedures in GAMs.
Other approaches include the component selection

and smoothing operator (COSSO) [69], SpAM [90] and
the method of Meier et al. [77], all based on a penalised
likelihood that reduces the problem to Lasso-type esti-
mation [112]. Chouldechova and Hastie [24] introduced
generalised additive model selection (GAMSEL) that
chooses between linear and non-linear fits for the com-
ponent functions. Antoniadis et al. [5] discuss variable
selection using P-splines, based on an extension of the
nonnegative garrotte. These methods have not been
evaluated in practice and further research is needed to
understand their properties.
We finally note that the variable selection procedure

of the component-wise boosting algorithms described in
the ‘Boosting’ section also applies to spline regression. In
fact, component-wise boosting can be used to fit a large
variety of GAMs, allowing a forward stagewise selection
of nonlinear effects and an automated determination of
the appropriate amount of smoothing [60, 104, 115].
Royston and Sauerbrei proposed transferring the MFP

approach to regression splines and smoothing splines
[95, 96]. The MFP algorithm provides a principled ap-
proach for systematic selection of variables and FP func-
tions. In the multivariable regression splines (MVRS)
algorithm, they combined backward elimination with a
search for a suitable restricted cubic spline function. In
the multivariable smoothing splines (MVSS) algorithm,
they replace the FP components by cubic smoothing
splines. For more details and a comparison of results
from MFP, MVRS and MVSS, we refer to Royston and
Sauerbrei ([96], chapter 9).

Examples illustrating the problems
In this section, we illustrate by way of selected published
analyses of observational studies that guidance on many
aspects of multivariable modelling outlined above is ur-
gently needed.

A case of popular but highly problematic variable
selection
Ramaiola et al. [88] conducted linear regression analyses
to identify prognostic factors of plasma prolifin-1 (Pfn-1)

http://mfp.imbi.uni-freiburg.de/
http://mfp.imbi.uni-freiburg.de/


Table 1 Relevant issues in deriving evidence-supported state of
the art guidance for multivariable modelling

No. Item

1 Investigation and comparison of the properties of variable
selection strategies

2 Comparison of spline procedures in both univariable and
multivariable contexts

3 How to model one or more variables with a ‘spike-at-zero’?

4 Comparison of multivariable procedures for model and function
selection

5 Role of shrinkage to correct for bias introduced by data-dependent
modelling

6 Evaluation of new approaches for post-selection inference

7 Adaption of procedures for very large sample sizes needed?
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levels in myocardial infarction patients with ST-segment
elevation. Their study sample comprised 86 patients.
Eleven explanatory variables were considered: duration of
ischaemia from onset of pain to percutaneous coronary
intervention, age, gender, diabetes, hypertension, obesity,
dyslipidaemia, tobacco, antithrombic treatments and levels
of hsC-reactive protein and P-selectin. The authors first
used bivariate correlation analysis or t tests to assess the
association between Pfn-1 and each of the potential ex-
planatory variables. Variables with a significant (α = 0.05)
association with Pfn-1 were then taken as the starting set
in a multivariable model to which backward elimination
(α = 0.05) was applied. Finally, two variables, duration of
ischaemia and patient age ‘remained as independent fac-
tors for Pfn-1 levels’, both with highly significant p values
lower than 0.001. Surprisingly, the time of ischaemia was
not mentioned as a candidate variable in the statistical
methods section. The values of the estimated regression
coefficients were reported, but not their standard errors,
and for interpretation purposes, no explicit reference was
made to the measurement scale of the corresponding vari-
ables. No assessment of model assumptions, nonlinearities
or interactions was mentioned. The stability of the model
was neither investigated nor questioned.

Example of conflicting results for a variable with a spike
at zero
Arem et al. [6] report on a pooled analysis of 666,137 par-
ticipants of 6 studies from the National Cancer Institute
Cohort Consortium, investigating the dose-response rela-
tionship between leisure time physical activity (LTPA) and
mortality. LTPA is measured based on self-reported aver-
age hours per week spent on several physical activities
over the prior year. These hours per week were then
transformed into metabolic equivalent (MET) hours per
week to adjust for different energy expended by the type
of activity. MET is a continuous variable with a spike at
zero (8.0%). The main analysis adjusts MET for several co-
variates, e.g. sex, smoking, alcohol (categorised into 4
groups), educational level, marital status, history of cancer,
history of heart disease and body mass index (categorised
into 5 groups). Age was used as the time scale in Cox re-
gression analysis. While the supplement contains a figure
in which MET entered the analysis using restricted cubic
splines, the main paper provides results for categorised
MET (7 categories including 0 as a category). Details of
the spline specification are not given. Both analyses with 0
MET hours per week as the reference suggest a benefit
from physical activity but do not agree well numerically.
For example, the hazard ratio for physical activity between
12min and 7.5 MET hours per week is 0.8 (95% confi-
dence interval 0.78 to 0.83), while in the same range of
physical activity, the spline analysis suggests a hazard ratio
smoothly changing from 1 to about 0.82 at 7.5 h per week.
Also, all other hazard ratios of the categorised analysis are
more extreme than would be suggested by the spline ana-
lysis. The paper contains no explanation of the discrep-
ancy. We suspect that the less extreme hazard ratios of
the spline analysis could be caused by ignoring the spike
at zero in that analysis. For patient counselling, the cate-
gorised analysis is misleading as it suggests a reduced haz-
ard of mortality (hazard ratio 0.8) already at very low
levels of MET (12min per week), which seems implaus-
ible. This is even more crucial as the paper contains the
misleading concluding statement ‘These findings…provide
important evidence to inactive individuals by showing that
modest amounts of activity provide substantial benefit for
postponing mortality’. Since the two analyses give different
results, we must conclude that such a statement is not
fully supported by the data, implying that at least one ana-
lysis is questionable.

Towards state of the art—research required!
In the earlier sections, we have illustrated that many
variable selection procedures are available. Unfortu-
nately, for all of them, knowledge of their properties and
the number of informative comparisons are limited. In
all sections, we raised many issues requiring further re-
search. We identified several papers in the literature pro-
viding recommendations for practice [49, 50, 51, 56,
102] or, as expressed by Royston and Sauerbrei [96],
‘Towards recommendations…under the assumptions…’.
They state that clear guidance is almost always impos-
sible and stress that guidance can only be obtained
under specific assumptions (e.g. large enough sample
size and absence of interactions). Based on the earlier
sections, in Table 1, we summarise issues we consider as
being the most relevant for further investigations. The-
oretical results derived for specific ‘sub-problems’ and
under strong assumptions may supply important insight,
but in general, we need empirical evidence based on ex-
tensive simulation studies. Difficulties in conducting
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unbiassed and informative simulation studies were dis-
cussed in a letter from the STRATOS simulation panel
[13]. The need to conduct better designed and analysed
simulation studies has been expressed [82].
Issue 1: Investigation and comparison of the properties of
variable selection strategies
Traditional and modern variable selection approaches
need to be compared in a head-to-head manner in a
variety of explanatory modelling situations. To be
valuable for explanatory modelling, target parameters
should be those that influence the ‘correct’ inclusion
and exclusion of variables, model stability, and model
complexity. They should address the accuracy of the
effects to be estimated, i.e. the regression coefficients.
The number of candidate variables, their distributions,
the correlation structure, the strength of effects and
the sample size should be the main meta-parameters
to be varied.
Issue 2: Comparison of spline procedures in a univariable
and multivariable context
In the univariable situation the important questions are
whether the results derived with the many suggested
spline procedures differ (substantially) from the true
function, and how much that depends on relevant pa-
rameters (e.g. number of knots). Furthermore, permitted
complexity of the function and usability of procedures
for non-experts are relevant. Criteria in the multivariable
situation are similar, with an additional focus on correct
variable inclusion and exclusion. We should consider
modifying some of the procedures proposed in light of
results from univariable investigations. The focus should
lie on practical data modelling situations with multiple
variables of mixed types, with splines used for modelling
continuous variables. Different types of functions and
sample sizes should be the main meta-parameters in the
univariable situation. Additional parameters (as with
issue 1) are required in the multivariable situation.
Issue 3: How to model one or more variables with a
‘spike-at-zero’?
For one variable, a two-step FP-based procedure (see the
‘FP procedure to handle variables with a ‘spike at zero"
section) has been proposed. Using splines, a one-step ap-
proach would be possible and comparisons of various
spline-based approaches with the FP approach are
needed. Main criteria are similar to those mentioned for
the univariable situation in issue 2. The FP approach has
been extended for two spike-at-zero variables. Four
strategies have been suggested, but current knowledge is
limited.
Issue 4: Comparison of multivariable procedures for
model and function selection
Given the huge number of penalised and spline-based
approaches recently proposed (see the ‘Spline regression’
section), additional studies such as Binder et al. [12] are
needed to evaluate their performance. The emphasis
should be on accuracy, efficiency, transportability, ease
of implementation and interpretability of the resulting
multivariable models.

Issue 5: Role of shrinkage to correct for bias introduced
by data-dependent modelling
The usefulness of post-selection shrinkage methods in re-
moving overestimation bias in the regression coefficients
and estimated functional forms in multivariable models
needs further investigation. Guidance in selecting the right
type of shrinkage factors (parameterwise, joint or global)
and cross-validation procedure (jackknife, bootstrap) to
obtain stable shrinkage factors is needed. Comparison
with approaches combining variable selection and shrink-
age (see the ‘Penalised likelihood’ section) are needed.
Post-selection shrinkage can be generally used for models
combining variable and functional form selection. This
context needs to be investigated.

Issue 6: Evaluation of new approaches for post-selection
inference
Recently, new procedures for obtaining confidence inter-
vals for regression coefficients after applying forward se-
lection, the Lasso or LARS have been proposed, but they
have not yet been evaluated in typical explanatory mod-
elling situations. For traditional variable selection
methods, the performance of alternative variance estima-
tors that are robust to model misspecification have not
yet been investigated.

Issue 7: Adaption of procedures for very large sample
sizes needed?
So far, nothing has been said about building of interpret-
able explanatory models with large data sets. In recent
years, more and more enormous data sets, e.g. with sam-
ple size n > 100,000 and number of potential explanatory
variables p > 1,000 have become available for medical re-
search, e.g. in pharmacoepidemiology, in studies with
electronic health records or registries and in individual
patient data meta-analyses. Procedures for multivariable
model building were developed with much smaller num-
bers in mind, with respect to both n and p. Approaches
considering the natural or empirical grouping of vari-
ables (‘variable clustering’) may become more relevant
here, while the usual settings for tuning parameters for
variable selection procedures need to be rethought. Al-
ternative approaches that optimally combine subject-
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matter knowledge with statistical learning need to be de-
veloped and evaluated.
Topics raised in Table 1 will keep our topic group

(and hopefully others) busy for several years, but what is
the alternative for developing evidence supported guid-
ance for the selection of variables and functional forms
in multivariable analysis?
Discussion
In a joint effort, members of TG2 identified seven issues
which we consider key to building a multivariable model
with continuous variables. The list could be extended, as
other experts in the field may have different experiences
and preferences and may consider other issues more im-
portant. We welcome discussion and critique as this
would trigger urgently needed research in one of the
most important areas of statistical analysis. We would
also be pleased if other experts and research groups were
motivated by the ‘Towards state of the art—research re-
quired!’ section and decided to do further research on is-
sues we raised. Members of our group have considerable
expertise to guide the necessary research we outlined.
We consider this work an important step on the long
journey towards evidence-supported guidance on the
state of the art. Following the general approach of STRA
TOS, guidance for experienced analysts will later be
adapted to researchers at level 1, who have less statistical
training.
It is well-known that the aim of a study strongly af-

fects the choice of a suitable analysis. Here we concen-
trate on models for description and mention that some
things change when the main aim is prediction. That is
one of the reasons why STRATOS has a separate topic
group for prediction (TG6). We also ignore the recent
trend in epidemiological studies to use directed acyclic
graphs (DAG) for specifying and deriving confounders
to enter regression models. It is a principled approach
requiring critical decisions based on subject-matter
knowledge. Nevertheless, it may be difficult to handle
when there are many variables and it does not help in
dealing with selection of functional forms for continuous
variables. While in general we do not discourage think-
ing about a DAG to identify a meaningful working set of
variables, the topic is perhaps more relevant for causal
inference. Therefore, we leave it for STRATOS topic
group TG7 (‘causal inference’). Naturally, there are many
other questions we have ignored because they are cov-
ered by different topic groups. For example, each ana-
lysis is preceded by many decisions in preparing the data
during an initial data analysis, and these decisions can
have an important influence on the results. For a de-
tailed discussion, see the paper of topic group TG3 (‘ini-
tial data analysis’) [63]. Nearly all the issues we discuss
apply for researchers working with survival data (TG8)
or high-dimensional data (TG9).
It is difficult and still unusual to pre-specify a detailed

analysis plan for observational studies, as is standard for
the analysis of RCTs. Consequently, we must assume
that usually, several analyses are conducted, but that re-
sults are presented only for some of them. It is well-
known that final models derived data-dependently are at
least partly a result of chance. It is still common practice
to base inference on a ‘conditional model’, as if the
model had been specified a priori. However, we must
realise that because the uncertainty of the model-
building process is ignored, the parameter estimates may
be (heavily) biassed and their variances are usually
underestimated.
With the increasing power of computing environ-

ments, it became easier to use Bayesian approaches or
resampling methods aimed at improving predictions and
their variances by using model averaging approaches [7,
17, 21, 32, 59]. Attempts to quantify model uncertainty
have been known since the 1980s [2, 23]. Researchers
stress that data-dependent derivations of multivariable
models need to be complemented by such investigations
[99]. Unfortunately, investigations of model stability are
a long way from becoming standard practice.
Regarding issues raised in the ‘Towards state of the

art—research required!’ section, we emphasised that
mathematical theory is unlikely to help and that appro-
priate simulation studies are the key tool to assess and
compare the properties competing approaches. However,
it is well-known that many simulation studies comparing
a suggested new method with existing methods may be
(strongly) biassed in favour of the new method [13].
Morris et al. [82] provided empirical evidence that simu-
lation studies are often poorly designed, analysed and re-
ported. They provided a structured approach to
planning and reporting simulation studies, which in-
volves defining aims, data-generating mechanisms, esti-
mands, methods and performance measures (‘ADEMP’).
STRATOS has a simulation panel which has started to
work on guidance for the design, conduct and reporting
of simulation studies. The corresponding authors of the
two papers just mentioned are members of this panel.
We outline the research needed to determine which

procedures could be considered SOTA. To use SOTA
methodology, an experienced scientist with deep know-
ledge of statistical methodology is required. However,
most analyses are conducted by people with a lower level
of statistical knowledge who need assistance working
with the more basic and straightforward methods. Many
analyses may be done with basic, simple methods not re-
quiring advanced methods regarded as SOTA. One im-
portant aim of the STRATOS initiative is to formulate
guidance for analysts with a lower level of statistical
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knowledge. See Sauerbrei et al. [98] for an outline of the
proposed strategy.
During the last two decades, reporting guidelines have

been developed for many types of studies, with the
EQUATOR network acting as an umbrella. For some of
these guidelines, so-called explanation and elaboration pa-
pers have been published. They include statements and
some advice on statistical analysis, but they discuss some
more basic issues and aim more at analysts with a lower
level of statistical knowledge. The STROBE, REMARK
and TRIPOD guidelines are probably the most pertinent
to issues discussed in this paper [4, 81, 120]. To avoid se-
lective reporting, which gives rise to biassed results and
misleading interpretation, it is important to report all ana-
lyses, preferably by giving key information via a structured
display. Altman et al. [4] proposed the REMARK profile as
a suitable means of improving reporting of prognostic
marker studies. Structured displays still need to be devel-
oped for other types of studies.
The overarching aim of the international STRengthen-

ing Analytical Thinking for Observational Studies (STRA
TOS) initiative is to provide accessible and accurate guid-
ance documents for relevant topics in the design and ana-
lysis of observational studies. The topic group TG2
working on guidance for the selection of variables and
functional forms has shown that many open issues exist
and that much research is needed to fill the evidence gap
when trying to determine which approaches may be
termed ‘state of the art’.

Conclusions
Selection of variables and identification of functional
forms for continuous variables is a key concern when
deriving a multivariable model. Triggered by high-
dimensional data, several more ‘modern’ variable selec-
tion strategies have been proposed. However, knowledge
of their properties and the number of informative com-
parison studies, ideally based on well-designed and ana-
lysed simulation studies, are scarce. As data are often
measured on a continuous scale, it is obvious that the is-
sues of variable selection need to be combined with the
selection of a suitable functional form. Assuming that an
effect is linear or categorising the data and estimating
step functions are the most popular approaches but can
lead to seriously wrong conclusions. Spline-based ap-
proaches or fractional polynomials avoid cutpoints, use
the full information from the data and can model non-
linear relationships. However, it is not clear which of the
spline-based approaches should be recommended for
practice, and when more flexible spline approaches
should be preferred to simpler approaches like polyno-
mials or fractional polynomials. In the context of de-
scriptive modelling discussed here, determining the final
model data-dependently causes a selection bias and
overestimates parameters. Improvements may be pos-
sible by using shrinkage approaches but their role is not
well-investigated.
Topic group 2 of the STRATOS initiative aims to de-

velop guidance for the selection of variables and func-
tional forms in multivariable analysis. In this paper, we
provide a short overview of methods for variable and
function selection and highlight seven important topics
that require further investigation. Identifying weaknesses
of current knowledge is an important step on the long
way to derive guidance for this highly relevant, but also
complex topic.
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