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Background and significance
Risk prediction models, whether based on traditional sta-
tistical approaches or computationally intensive machine 
learning methods, are increasingly being developed to 
support decision-making. By estimating individual risks 
based on multiple predictor variables, prediction models 
can improve decision-making compared to either clini-
cian judgment or heuristics based on crude risk groups. 
A critical aspect of risk prediction models is calibration, 
the extent to which predicted probabilities align with true 
event probabilities. In a well-calibrated model, close to x 
out of 100 patients given a risk of x% will have the event.

Miscalibration can result in harmful care decisions [1]. 
As an illustration, suppose a myocardial infarction risk 
model is miscalibrated such that the predicted probabili-
ties are 20-fold lower than true probabilities. Discrimina-
tion (such as area-under-the-curve) would be unaffected, 
but a patient at high risk (e.g., 40%) would be told that 
they are at low risk (2%) and would forgo beneficial pro-
phylactic therapy.

Here we focus on what to do if a model is found to be 
miscalibrated upon external validation. One approach 
would be to immediately  update the model by revising 
model coefficients or modifying the intercept. We refer 
to this approach as “reflexive recalibration” because it 
involves mathematically adjusting the model in response 
to evidence of miscalibration without consideration of 
underlying causes. In this paper, we discuss some of the 
dangers of reflexive recalibration and recommend the 
alternative approach of identifying the causal mecha-
nisms of miscalibration, before deciding on the best 
course of action.

Reflexive recalibration
We define reflexive recalibration as any mathematical 
adjustment to a model made in response to evidence of 
miscalibration that is done without consideration of the 
underlying causal mechanisms of the miscalibration.

There are several examples of reflexive recalibration 
in the literature. The Framingham Coronary Heart Dis-
ease (CHD) risk model, for instance, has been evaluated 
in multiple patient populations and is often reflexively 
recalibrated. The original Framingham model was 
developed and internally validated on a predominantly 
white European population. D’Agostino et  al. [2] inves-
tigated the generalizability of the Framingham model 
to a more diverse cohort. Overestimation of risk was 
found for Japanese American men, Hispanic men, and 
Native American women. The prediction models were 
recalibrated by replacing the mean values of the risk fac-
tors and incidence rate in the Framingham cohort with 
their respective values from a non-Framingham cohort. 
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Notably, there was no discussion of why miscalibration 
was present for these particular groups. Similarly, Hua 
et al. [3] assessed the validity of the Framingham model 
in a cohort of Indigenous Australians. They found risk 
underestimation and reflexively recalibrated models 
using the same approach as D’Agostino et al. The discus-
sion section of this paper notes the importance of using 
calibrated models for Indigenous populations but does 
not discuss why miscalibration was present. Liu et  al.’s 
[4] study of a Chinese population mirrored the approach 
of Hua et  al. and D’Agostino et  al.: miscalibration when 
applied to a different population and modification of the 
intercept. Changing the intercept is equivalent to add-
ing a coefficient for race, and this approach is typically 
frowned upon without the presence of a strong causal 
rationale [5].

The methodological literature often recommends 
reflexive recalibration when there is evidence of miscali-
bration. For instance, one group [6] suggested the over-
arching guideline that “when we find poorly calibrated 
predictions at validation, algorithm updating should 
be considered to provide more accurate predictions for 
new patients from the validation setting.” Furthermore, 
other workers [7] have explored and compared specific 
methods for updating a model and concluded that parsi-
monious model updates (e.g., refitting the intercept) are 
preferable to more extensive updates (e.g., re-estimating 
all coefficients). The authors suggest that such recalibra-
tion is necessary and sufficient for optimizing a model 
that is found to be miscalibrated, stating, “If alpha and 
or beta significantly deviate from the ideal case, there is 
a need to recalibrate the model.” Some methods go even 
further than recommending recalibration on evidence 
of miscalibration: one statistical approach for evaluating 
prediction models includes a non-parametric recalibra-
tion approach hardwired in the methodology [8]; hence, 
models are automatically recalibrated during the evalu-
ation process without any assessment of the degree of 
miscalibration.

Reflexive recalibration ignores the causal pathways 
leading to miscalibration
Reflexive recalibration undoubtedly solves a problem of 
scientific publishing: a model that once looked bad now 
looks good. However, we believe that this approach can 
obscure problems that impact the value of models when 
used in clinical practice. Specifically, we think that the 
first response to miscalibration should be an investiga-
tion of causal pathways. Without understanding why 
a model is miscalibrated, it can be difficult to know 
whether to use the model, or a recalibrated alternative, in 
practice. To illustrate this point, imagine that a prediction 
model for recurrence of cancer after surgery (“Model X”) 

is created using data from patients in Hospital A. Inves-
tigators from Hospital B conduct an external validation 
study of Model X and find miscalibration. The Hospital B 
investigators recalibrate Model X, creating a new Model 
X*. Take the case where the cause of the miscalibration 
is related to differences in pathology evaluation between 
the two hospitals. This gives us the following possibilities:

a. The pathology approach at Hospital A is more typi-
cal; Hospital B is an outlier. In this case, Model X is 
preferable to Model X* in most populations.

b. The pathology approach at Hospital B is more typical; 
Hospital A is a bit of an outlier. In this case, Model X* 
is preferable to Model X in most populations.

c. The pathology approaches at Hospitals A and B are 
different but both widely used. In this case, hospi-
tals should select Model X or Model X* according to 
their approach to pathology.

d. There are actually three different common 
approaches to pathology grading. In this case, the 
approach would be to create a third Model X2 and 
decide between Models X, X*, and X2 depending on 
the pathology approach.

e. The pathology approach at Hospital A is more typical 
and Hospital B is about to switch over to use Hospital 
A’s approach. In this case, Model X is preferable to 
Model X*. In other words, the original model should 
be used in favor of a model recalibrated to a popula-
tion even in the population used for recalibration.

The key point here is that reflexively recalibrating and 
using the new model X* would likely lead to outright 
harm in scenario A and E and suboptimal outcomes in 
scenarios C and D.

Understanding “local needs”
Investigators commonly call for models to be recalibrated 
to “local needs” [6, 9] before deployment in a new popula-
tion. For instance, one proposal was “a simple method to 
adjust clinical prediction models to local circumstances” 
by updating the intercept, which was deemed preferable 
to developing new models [10] from scratch because it 
takes advantage of previous predictive information. As 
an empirical example, Wessler et  al. [11] recommend 
regional recalibration of mortality prediction models 
in patients with acute heart failure. After assessing the 
generalizability of existing prediction models derived in 
North America, they conclude, “performance (specifi-
cally calibration) can be improved significantly with sim-
ple recalibration procedures, but only when recalibration 
is performed using region‐specific corrections.” However, 
there is no consensus on what counts as a “region,” that 
is, what level of local is appropriate. Should there be, 
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say, one for North America, one for Europe, and one for 
East Asia? Or should there be different models for differ-
ent areas of Europe, different countries, or even different 
regions within countries? It is of note, for instance, that 
there are likely to be larger differences between patients 
in London versus North East England than between those 
in London and Paris. Similarly, there are often larger dif-
ferences in patient populations in different areas of New 
York City, than between New York state as a whole and 
Nebraska.

Perhaps as a result, some studies have recommended 
going beyond “regional” corrections to recommend 
hyper-local “site-specific validation” [12]. Although this 
approach would offer a more accurate picture of model 
performance at a given site than a more general external 
validation study, it is currently infeasible without sub-
stantial data infrastructure and sufficient patient volume. 
Take for example a model for predicting the risk of sep-
sis for patients in intensive care units (ICUs). There are 
approximately 5000 hospitals in the USA that have an 
ICU, and in many cases the ICU has fewer than 5 beds 
[13]. “Site-specific” validation of a sepsis model would be 
deemed cost and time prohibitive if set up as 5000 sepa-
rate studies.

As a second example, a study of prediction models 
for chronic cardiometabolic disease [14] recommended 
model recalibration “in settings where different disease 
rates are expected.”

The authors stated that a lower disease incidence rate 
in the validation cohort than in the development data was 
the cause of the miscalibration. They reflexively recali-
brated by adjusting the intercept, “in line with previous 
research indicating that simple recalibration techniques 
seem sufficient for improving performance, especially 
when discrimination is already adequate in a new set-
ting.” However, it is unclear how to define a “setting.” 
Again, this could be a unit, a hospital, a city, a region of 
a country, a whole country, or a continent. The authors 
themselves explain that incidence rates can be influenced 
by the specific definition of chronic cardiometabolic dis-
ease, smoking prevalence, diet, exercise, and statin use—
all factors that vary in unpredictable ways across settings.

Understanding the causal mechanisms 
of miscalibration as an alternative approach
We propose that the appropriate response to evidence 
of miscalibration is not immediate mathematical adjust-
ment of a model, but investigation of the underlying 
causal mechanisms. We are not the first authors to do so. 
For instance, Jones et  al. have recommended construct-
ing causal diagrams of the data generating process to 
understand possible mechanisms for miscalibration dur-
ing model deployment [15]. Similarly, Subbaswamy and 

Saria propose proactively examining underlying causal 
mechanisms, as opposed to making “reactive” adjust-
ments, to create transferable models [16]. Moreover, it is 
clear that this approach fits naturally with more general 
considerations of good statistical practice. We conduct a 
study on a sample and say that the results are applicable 
to future observations drawn from the same population 
as the study sample. In the specific case of prediction 
modeling and calibration, we cannot define a population 
without knowing the causal influences on calibration.

Table 1 gives some examples from the literature where 
investigators have attempted to determine the root 
causes of miscalibration. For instance, Ankerst et al. [17] 
examined influences on models to predict outcomes of 
prostate biopsies. They found that the coefficient for fam-
ily history of prostate cancer varied between settings and 
attributed this to differences in the way that family his-
tory was recorded. In research studies, family history is 
recorded according to protocols that tend to be inclusive 
(e.g., clinically insignificant cancer diagnosed at advanced 
age in a second-degree relative); in clinical practice, fam-
ily history is only recorded if it is remarkable (e.g., aggres-
sive cancer diagnosed at a young age in a close relative). 
Hence, the coefficient for family history is higher in the 
latter setting. This insight has clear implications on how 
to apply models developed using different cohorts.

Another example is Ashburner et  al. [21], who inves-
tigated the use of an atrial fibrillation risk prediction 
model, CHARGE-AF, in post stroke populations. They 
found that the original CHARGE-AF model had poor 
calibration and attributed this to a difference in underly-
ing risk between the development and validation cohorts. 
CHARGE-AF was developed in a community-based 
cohort with low baseline AF risk, but it was tested in an 
academic medical hospital in high-risk stroke patients. 
The baseline risk tends to be lower in community-based 
cohorts because they include routine follow-up patients, 
whereas academic hospitals tend to be referral sites for 
high-risk patients.

These two examples, along with the others given in 
Table 1, demonstrate the poverty of calls for local or “site-
specific” recalibration. What matters in these examples is 
not geographic location, and is not specific to each and 
every site where care is delivered, rather it constitutes 
generalizable knowledge that can be applied to new set-
tings without the need for further data collection.

Determining the multifactorial causes of miscalibra-
tion requires domain expertise and high-quality data, 
which may not always be available. This presents a chal-
lenge: balancing thorough investigation with the practi-
cal constraints of time, data availability, and resources. 
Despite these challenges, we argue that even a partial 
understanding of the mechanisms driving miscalibration 
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Table 1 Examples of investigating the root causes of miscalibration identified during external validation. These examples were 
identified through a literature search of PubMed and Google Scholar that included papers published on or before February 4, 2024. We 
focused on studies that explicitly reported calibration metrics or provided detailed discussions of miscalibration in clinical prediction 
models. The selection aimed to encompass diverse scenarios, such as biological differences, temporal shifts, and institutional variations, 
to offer a comprehensive perspective on factors influencing calibration

Dataset shift domain: cause of 
miscalibration

Specific: variables affected Real world example Investigation of miscalibration

Difference in clinical practice Admission policies, threshold 
for surgery, medications prescribed, 
pathology grading

van den Boogaard et al. [18] A model predicting delirium in ICU 
patients had poor calibration for partici-
pants in a multinational observational 
study. The model’s overestimation 
of the risk of developing delirium could 
be explained by differences in ICU 
admission policies and treatments, 
specifically sedation protocols. Varied 
sedation practices impact the level 
and duration of sedation, influencing 
the likelihood and severity of delirium 
occurrence, therefore affecting 
the model’s performance.

Rauh et al. [14] A model predicting 7-year risk 
for chronic cardiometabolic diseases 
had poor calibration for participants 
in AusDiab, a population-based cross-
sectional study. The model overesti-
mated disease rates as it was developed 
with data from 1989 to 2005 whereas 
the AusDiab study was conducted 
from 2004 to 2012—a time period 
in which there was increased use 
of antihypertensives and statins.

Ankerst et al. [17], Vickers [19] PCPTRC, a model predicting risk 
of prostate cancer, had poor calibration 
for patients in both the North American 
and European cohorts of the Prostate 
Biopsy Collaborative Group (PCBG). The 
PCPTRC model’s underestimation of risk 
may be because of the switch in clinical 
practice from six-core biopsy procedure 
to 12 cores. Additionally, there have 
been changes in how pathologists 
grade prostate cancer such that there 
is increased prevalence of high-grade 
disease in contemporary cohorts.

Difference in human behavior Diet, exercise, clinician skill DeFilippis et al. [20] AHA-ACC-ASCVD, a model for predict-
ing risk of cardiovascular events, had 
poor calibration in MESA, a multi-
center prospective community-based 
epidemiologic study in a sex-balanced 
and multiethnic cohort. The model’s 
overestimation of atherosclerotic cardi-
ovascular disease risk may be explained 
by differences in salt and trans fat 
intakes for participants in AHA-ACC-
ASCVD’s decades-old development 
data versus MESA’s modern cohort data.
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Table 1 (continued)

Dataset shift domain: cause of 
miscalibration

Specific: variables affected Real world example Investigation of miscalibration

Difference in data collection tech-
niques

Family history Ankerst et al. [17] PCPTRC, a model predicting risk 
of prostate cancer, had poor calibration 
for patients in both the North American 
and European cohorts of the Prostate 
Biopsy Collaborative Group (PCBG). 
The PCPTRC model’s underestimation 
of risk may be because it was built 
on a screening trial in which family 
history was a required data element 
for all participants. In contrast, the PCBG 
model, which was well-calibrated 
for both cohorts, was developed using 
data from clinical records. Clinical 
records might only include family his-
tory of a disease if it was more aggres-
sive (e.g., cancer in a family member 
might only be noted if it led to death). 
This difference in family history collec-
tion would lead to different odds ratios 
for family history and thus differences 
in predicted risk.

Difference in clinical application 
of the model

Case mix, patient demographics, 
model setting

Ashburner et al. [21] CHARGE-AF, a model predicting atrial 
fibrillation (AF) risk, had poor calibration 
for participants in a medical record-
based study in a tertiary hospital. The 
model’s underestimation of atrial fibril-
lation risk can be explained by the fact 
it was developed in a community 
setting—with lower incidence of AF—
and applied in an academic setting—a 
population with higher underlying risk 
of developing AF.

Das et al. [22] A model for predicting 30-day mortal-
ity in patients with acute myocardial 
infarction was trained and externally 
validated on patients enrolled in a ran-
domized controlled trial. When this 
model was deployed on a community-
based cohort, risk was underestimated. 
This was attributed to differences 
in patient demographics. Compared 
to the general population, patients 
in cardiovascular RCTs tend to be 
younger, male, undergo more revas-
cularization, and have fewer comorbid 
conditions.

Steyerberg et al. [23] A model predicting indolent prostate 
cancer that was developed on a cohort 
in a clinical setting underestimated 
risks of indolent cancer for a cohort 
in a screening setting. Patients present-
ing clinically generally do so for some 
reason, and therefore have a higher risk 
of more aggressive disease.

Difference in nomenclature Definitions, medical coding/billing Rauh et al. [14] A model predicting 7-year risk 
for chronic cardiometabolic diseases 
had poor calibration for participants 
in AusDiab, a population-based cross-
sectional study. The model overesti-
mated disease rates as its development 
data defined cardiovascular disease 
differently from the AusDiab study.
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can yield insights that may allow researchers to make 
informed adjustments that improve model applicability 
without resorting to a reflexive recalibration.

Concluding remarks
Miscalibration is commonly found during external vali-
dation of a model. We define reflexive recalibration as 
a mathematical adjustment to a model that is made in 
response to evidence of miscalibration without consid-
eration of the underlying causal mechanism. We argue 
that this is a misguided approach and propose that inves-
tigators should instead attempt to understand the causal 
pathways underpinning miscalibration. Doing so can 
help identify how to best update and implement a model 
and can result in generalizable knowledge that is trans-
ferable to other settings. As such, we are not inherently 
against recalibration: in our example of a cancer recur-
rence model, for instance, recalibration would have been 
of benefit in many scenarios. But such recalibration 
should only take place after evaluation of causal mecha-
nisms, it should not be reflexive.
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